• CanadaPlus@lemmy.sdf.org
        link
        fedilink
        arrow-up
        6
        ·
        edit-2
        4 months ago

        Umm, AKCTSHUALLY it gets more like O(n2) in parallel, assuming you’re using a physically achievable memory. There’s just a lot of criss-crossing the entries have to do.

        Strassen’s algorithm gets O(n2.8) in serial by being terrible, and the weird experimental ones get O(n2.3), but the asymptotic benefits of Coppersmith-Winograd and friends only kick in if you’re a Kardashev III civilisation computing a single big product on a Dyson sphere.

        • Mikina@programming.dev
          link
          fedilink
          arrow-up
          3
          ·
          3 months ago

          I can’t decide whether this sentence is a joke or not. It has the same tone that triggers my PTSD from my CS degree classes and I also do recognize some of the terms, but it also sounds like it’s just throwing random science terms around as if you asked a LLM to talk about math.

          I love it.

          Also, it’s apparently also real and correct.

        • lad@programming.dev
          link
          fedilink
          English
          arrow-up
          2
          ·
          4 months ago

          Yeah, in fact, I somehow calculated in assumption of n being the amount of elements in matrix, not (assuming square matrix)

          But I am impressed to know that there are serial algorithms that approach O(n²), thank you for sharing that info

          • CanadaPlus@lemmy.sdf.org
            link
            fedilink
            arrow-up
            3
            ·
            edit-2
            4 months ago

            Yeah, they work by turning the problem into some crazy kind of group theory and attacking it that way. Every once in a while someone shaves the decimal down slightly, just by implementing the deep math in a more efficient way. A new approach will be needed if it is in fact possible to get down to O(n2), though. Strassen’s is a divide and conquer algorithm, and each step of the iteration looks like this:

                S[1] = B[1, 2] - B[2, 2]
                S[2] = A[1, 1] + A[1, 2]
                S[3] = A[2, 1] + A[2, 2]
                S[4] = B[2, 1] - B[1, 1]
                S[5] = A[1, 1] + A[2, 2]
                S[6] = B[1, 1] + B[2, 2]
                S[7] = A[1, 2] - A[2, 2]
                S[8] = B[2, 1] + B[2, 2]
                S[9] = A[1, 1] - A[2, 1]
                S[10] = B[1, 1] + B[1, 2]
                P[1] = STRASSEN(A[1, 1], S[1])
                P[2] = STRASSEN(S[2], B[2, 2])
                P[3] = STRASSEN(S[3], B[1, 1])
                P[4] = STRASSEN(A[2, 2], S[4])
                P[5] = STRASSEN(S[5], S[6])
                P[6] = STRASSEN(S[7], S[8])
                P[7] = STRASSEN(S[9], S[10])
                C[1..n / 2][1..n / 2] = P[5] + P[4] - P[2] + P[6]
                C[1..n / 2][n / 2 + 1..n] = P[1] + P[2]
                C[n / 2 + 1..n][1..n / 2] = P[3] + P[4]
                C[n / 2 + 1..n][n / 2 + 1..n] = P[5] + P[1] - P[3] - P[7]
                return C
            

            In my copy of Introduction to Algorithms, it says something like “this is the most bullshit algorithm in the book and it’s not close” underneath. You can make it a bit neater by representing the multiplication operation as a 3-dimensional tensor, but at the end of the day it’s still just a stupid arithmetic trick. One that’s built into your GPU.